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ABSTRACT

The approximation of definite integrals using Monte Carlo simulations is the
focus of the work presented here. The general methodology of estimation by
sampling is introduced, and is applied to the approximation of two special

functions of mathematics: the Gamma and Beta functions. A significant ap-
plication, in the context of radar detection theory, is based upon the work of
[Shnidman 1998]. The latter considers problems associated with the optimal
choice of binary integration parameters. We apply the techniques of Monte
Carlo simulation to estimate binary integration detection probabilities.
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Approximation of Integrals via Monte Carlo Methods, with
an Application to Calculating Radar Detection Probabilities

EXECUTIVE SUMMARY

The performance analysis of a radar detection scheme requires estimation of probabilities

of false alarm and detection, under various clutter scenarios. These probabilities, which

often appear as definite integrals, are frequently analytically difficult to evaluate. Hence,

numerical approximation schemes are employed. Monte Carlo estimators use statistical

simulation to evaluate such integrals. As with any approximation scheme, there are limi-

tations and drawbacks in its application. One of the major difficulties with Monte Carlo

estimators is that very large sample sizes may be required, in order to achieve a reasonable

estimate. This is especially true in the context of estimating probabilities of rare events,

such as radar false alarms.

The purpose of this report is to examine the Monte Carlo estimation of integrals in general.

After formulating the scheme, applications to the evaluation of two special functions are

considered. The success of an estimator will be decided on its performance in terms of

providing a reasonable estimate for the smallest sample size possible.

The major application in this report will be to obtain estimates for a detection probability

in a binary integration context. Under the assumption of a Swerling target model, an

expression for the binary integrated probability of detection is obtained in Shnidman's

1998 paper entitled Binary integration for Swerling target fluctuations (IEEE Transactions

on Aerospace and Electronic Systems, Volume 34, pp. 1043-1053). We apply Monte Carlo

simulations, together with some functional approximations, to estimate this probability

for Swerling 1 and 3 target models.
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1 Introduction

It is a common occurrence, in the study of radar detection performance, to find it ana-
lytically intractible to construct a closed form expression for probabilities of interest. The
two key performance measures, the probability of false alarm and probability of detection,
used in the analysis of Constant False Alarm Rate (CFAR) detectors, typically involve
integrals that cannot be readily evaluated. Monte Carlo methods are thus often used,
and in the context of false alarm probabilities, much work has been generated on the
construction of suitable suboptimal biasing densities (see [Weinberg 2004] and references
contained therein). In a CFAR system, the false alarm probability is set to a very small
number, and consequently Monte Carlo estimators of this may need a very large sample
size to achieve a nonzero estimate.

In the context of CFAR detection, we are testing whether a test observation x0 represents
a target or not. This decision is based on whether this observation exceeds a weighted
"ý'average" measure of the clutter level. Mathematically, if B0 is the random variable
representing the test observation, and B1 , B2 ,..., B.n are clutter statistics, we declare a
detection if B0 > ý'(EB1, B2, .... , 7n), where T is the threshold, and ýb is a function which
measures the clutter level. The probability of false alarm and detection can be written in
the form

P zz "jf..j (x°xI ... 'xn)ý(xOxl,..."xn)dxodxl"..dx. (1)

Here ((xO0X1, ... ,Xn) I[XO > nxl, X2,..., Xn)], where I is defined by

[X c A] 1 ifxcA;

0 otherwise.

The term involving ý is the joint density of the cell under test and the clutter statistics.
Whether the integral (1) is for a detection or false alarm probability will depend on the
distribution of the cell under test statistic. In either direction, what becomes apparent is
that this integral will often be quite difficult to evaluate analytically. Hence a numerical
approximation scheme is required. Due to the presence of a density in the integral (1),
Monte Carlo estimation seems to be a natural choice.

The objective of this report is to illustrate the application of Monte Carlo methods to the
more general problem of integral evaluation. The ideas of changing a simulation distribu-
tion, also known as Importance Sampling, will be illustrated in this context. Monte Carlo
techniques will be illustrated in the application to evaluation of some special functions that
arise in mathematics. A specific radar related application appears in the evaluation of a
detection probability integral. The latter arises in the context of binary integration with
Swerling target models, and appears in [Shnidman 1998]. A Monte Carlo scheme is used,
as well as some other approximations, to construct estimates for the binary integrated
detection probability for two Swerling models.

We begin by introducing the basic ideas of Monte Carlo methods.
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2 Monte Carlo Techniques

The application of simulation methods to the estimation of difficult integrals began with
the work of [Kahn 1950] and others working in nuclear physics in the 1940s. An early
radar application to estimation of false alarm probabilities is [Mitchell 1981]. The basis
for Monte Carlo techniques is the Strong Law of Large Numbers (SLLN) (see [Billingsley
1986]). This states that a series of independent and identically distributed (IID) random
variables, normalised by the number of terms in the series, will converge to the mean of
any one of the terms in the series. Mathematically, this implies that if 1 , B2 ,..., E7 is a
sequence of IID random variables with finite mean E[B], then

lim j-1 E[B], (2)
---- Tm

except on a set of probability measure zero. This suggests that, for sufficiently large m,
the average of the random variables in (2) can be approximated by its mean. Where this
applies, in the context of interest, is that it enables the evaluation of integrals through
simulation.

Consider the integral I fQ w(x)ý(x)dx, where ý is a density on Q, and w is a function.
This integral is a statistical mean of a random variable B on Q with density ý. Hence we
can write I E[w(B)]. Now if B 1 ,BE2 ,..., EmT is an IID sequence of random variables,
then the SLLN (2) implies that

lim j-1 E[w(BE)] I, (3)
m--c •m

except on a set of probability measure zero. Hence, by applying (3), we can deduce that

m

I 1 w(x)t(x)dx j1 m (4)

where the sequence Z1 , z 2 ,... , Zm consists of realisations of the variables B1 , B2 ,... , "m.

The result in (4) implies that the integral I can be estimated by generating a series
of realisations of a random variable with density ý, and evaluating the average of the
function w over these realisations. This is a computationally simple exercise in theory.
As remarked previously, an underlying problem with Monte Carlo methods is that it may
require a very large sample size to achieve a reasonable estimate. Changing the biasing
density can sometimes rectify this, and this will be considered in the discussion to follow.

In cases where we have a definite integral of a function that is not a density on the integral's
domain, it is still possible to apply Monte Carlo methods. To illustrate this, suppose I is
a definite integral of the form

f ((x)dx, (5)
JA
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where ( A -* R is a continuous nonnegative real valued function on the interval A -

[a, b]. We do not assume that the boundaries of this interval are finite, so that we allow
for integrals on infinite domains. We do assume, however, that the integral exists, in a
Riemann or Lebesgue sense. We would like to apply the SLLN to (5), in order to apply a
Monte Carlo approximation. We can construct a probability density function ý on A, and
modify the integral to

IA ( x)dx Fw(B), 
(6)

where w(x) and the expectation in (6) is with respect to a random variable " with

density ý. We require this density to be nonzero so that w(x) is well defined. The existence
of such densities can be shown by considering the four types of integral domains. If the
integral's domain is an interval of the form [a, b], where both a and b are finite, then one
can choose a uniform distribution over this domain. In the case of an integral with domain
[a, cc) or (-oo, b], where both a and b are finite, an Exponential distribution can be used.
The final case, where the integral is over the whole real line, a Gaussian distribution can
be used. This procedure is often referred to as Importance Sampling. [Weinberg 2004]
contains a detailed list of Importance Sampling references.

An application of the SLLN to (6) results in the Monte Carlo estimator

IN N Z ct(h), (7)
j=1"

dd

where each ",j - E. In general, the expression 4) d T means that the distributions
of random variables 4) and T are equal, so that for every set A in a common domain,
P(J) c A) - P(I c A). Estimator (7) is an unbiased estimator of I, since

FIN IEw(B) fw(x)t(x)dx I1. (8)

Thus estimates are centred on the integral being approximated. The variance of (7) can

be shown to be

VINA xl (IE(w(B•)2) - (IE(w(B•))2)

We would like to have an estimator whose variance is as small as possible. Notice that
with the choice of •(x) on A, the variance (9) reduces to zero. This biasing density

VIN

is known as the optimal solution, but is of no practical use because it depends on the
quantity being estimated. Many authors have used knowledge of the optimal solution to
construct a suboptimal biasing density, with varying degrees of success (see [Gerlack 1999]
and [Orsak and Aazhang 1989]). Its form suggests that a suitable biasing density should
be concentrated on the integral's domain, and in some sense proportional to the integrand.

withthechoce f ýx) (() onA, he arince(9)redces o zro.Thi bisin desit
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Thus, if we are presented with an integral of the form (5), there are three ways to proceed
in terms of the Monte Carlo approach. If integrand ((x) contains a density on the integral's

domain, we can use this to simulate. If this is not the case, then we can insert a biasing
density, and alter the integrand. The other possibility is that we can change biasing
densities even if ( does contain a density.

We now turn to the issue of a suitable choice of biasing density. There are many different
distributions from which one can select a biasing distribution. The Weibull family of

distributions, W(a, /), with nonnegative parameters a and /3, has probability density
function

Sw(x) a

and can be simulated via

%7 j(R) /3(-log(R))U dW(a,/3),

where I)w(x) is the cumulative distribution function, and R d R(O, 1) is a continuous

uniform distribution on the unit interval. There are a number of important special cases
of the Weibull distribution. Observe that W(1, /3) is an Exponential distribution, while
WV(2, /3) is Rayleigh.

The Gamma family of distributions, g(r, /3), has density

( r-1 x

where 7(r) is a normalising constant, called the Gamma function, and we also assume
parameters r and /3 are nonnegative. It is analytically impossible to write down the
inverse of the cumulative distribution function of the Gamma distribution. However,

it is possible to simulate from this distribution, using the fact that if B is a random
variable with the Gamma distribution with parameters r and /3, then B "El + B2 +

+Br, where each "Bj is an IID Exponential random variable with parameter /3. Thus
realisations of a Gamma distribution can be obtained by summing independent realisations
from Exponential distributions.

The success of a biasing density is largely application dependent. In the next section
we will investigate the result of applying different biasing densities to the Monte Carlo
estimation of some special functions.

4



DSTO-TR 1692

3 Monte Carlo Approximations of some Special
Functions

In order to illustrate the application of Monte Carlo simulation to the evaluation of inte-
grals, we examine two special functions. The Gamma and Beta functions arise in a number
of contexts in mathematics and statistics. In applied mathematics, these functions appear
in the theory of Bessel functions [Bowman 1958]. They arise as normalising constants in
the definition of certain distributions in the theory of probability [Ross 1983]. The Gamma

function 7(n) WR --* R is defined by the integral

" "y(j) xn-le-xdx, (10)

and the Beta function /(m, n) : R+ x W- R is01
J3(m, n) xm

1 (1 -_ x)n-ldx. (11)

For nonnegative integral n, it can be shown that 7(n + 1) n!. The Beta function can be
decomposed into an ex]pression involving Gamma functions. Specifically, it can be shown
that J3(m, n) - .'((n. Except for some simple cases, it is necessary to use numericaly(m-+n)*
methods to evaluate these integrals in practice. We will apply Monte Carlo techniques to
both (10) and (11). In the case of (10), the exponential term ý(x) : ex is a density on
the interval [0, oo). Hence, an appropriate Monte Carlo estimator of (10) is

I N

(n, N) +NZBE (12)
j=1

where each E is a random variable generated from a distribution with density ý. In this
case, since ý is the density of an Exponential random variable with parameter 1, we can

Sd
useB log(R) to simulate the distribution, where R is a uniform density on the interval
[0,1].

We can construct an alternative estimator by simulating from a distribution with density

from the Weibull class. If ý is the Weibull density ý(x) ((- , then an

estimator based on this is

F2(n, N) N j Bj- ý(z j)j=1"

e ± ()o (13)
aN

j=1

where each BE j3(-log Rj)o, with Rj d R[0, 1].

Figures 1-3 in Appendix A contain simulations to estimate the Gamma function, using
both the estimators (12) and (13). The Matlab code used to generate the estimates can be

5
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found in Appendix B. Each plot compares these two estimators to the exact value for the
Gamma function, or a numerical approximation based upon an inbuilt Matlab function.
Figures 1 and 2 are based upon a sample size of N 10, 000, while that of Figure 3 is
based upon a sample of size of N 100, 000. The Weibull estimator (13) was chosen with
parameters a 1 and /3 10. It was found empirically that other values for a did not
provide good estimates. The simulations show there is reasonably good convergence to
the exact value for approximately 100,000 simulation runs.

The Beta function can also be estimated using Monte Carlo estimators. The difference is
that the domain of the integral is the unit interval [0, 1]. A suitable density on this interval
is the standard uniform one, which is ý(x) 1, for x c [0, 1]. In this case, the Monte
Carlo estimator is A 1 N

--mny), N) 7Z l (1Bj)n 1 , (14)/31(7•,?,N) N I: ?-I( n-

j-1

where in this case, each "-j is a random variable with the standard uniform density on
[0, 1]. There are also some other natural choices for biasing densities for the Beta function.
We can choose ý(x) mxm-l, and introduce a scaling factor of m to the Beta function's
integral. Hence the estimator is

2 (m, nN) _ Z1 _ 7j)n, (15)mN (-1 - -1

where E is a random variable with the density ý. This can be simulated from the fact

that R ", where R - R[0, 1] is a uniform distribution on the unit interval. Note that
a biasing density can also be based on the second term in the integrand. Specifically, we
could make the choice of ý(x) n(1 - x)n- 1 , which is also a density on the unit interval.

As remarked in Section 2, it is possible to simulate from any distribution we can define
on the integral's domain. In the current context, we could insert a modified Exponential
distribution into the Beta integral, and use this for simulation. To illustrate, note that
the function ý(x) -%1 is a density on [0, 1], and a random variable B with this as its

density can be simulated by - log(1 - (1 - e- 1 )R) d "E where as before R is the standard
uniform distribution on the unit interval. This distribution is referred to as a truncated
Exponential distribution. Thus a third estimator of the Beta function is

/33 (M I n, N) 1 -- I-1 N
N Z) , (16)j=1

where "Bj is generated from the truncated Exponential distribution.

Figures 4-6 in Appendix A contain a number of simulations of the three estimators (14)-
(16). For given values of m and n, these estimators are compared to the exact result.
In contrast to the estimates for the Gamma function, there is rapid convergence in this
case. After only 100 simulations, the estimators are giving very good estimates of the Beta

function.

6
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4 Monte Carlo Approximations of Detection
Probabilities

We now turn to the problem of estimating radar detection probabilities using Monte Carlo
methods. The detection probability under consideration arises in the context of binary
integration for Swerling target fluctuations [Shnidman 1998]. As an alternative to coherent
integration of N pulses [Levanon 1988], binary integration determines how many single
pulse exceedences of the threshold occur. A target detection is declared if there are at
least M such exceedences, for a prescribed value of M, within N observations. A key
issue is to determine the optimal value of M, which is the focus of [Shnidman 1998]. We
will instead assume such an optimal value has been determined, and will investigate the
corresponding detection probability integrals.

The following is taken from [Shnidman 1998], with slight modification of notation. Define
the cumulative distribution function of Binomial probabilities between two integers N and
M, with 1 < M < N, to be

E(N,M,p)r S�(N) (1 -p)N-kpk, (17)
k-M

for some 0 < p < 1. The binary false alarm probability is PFA E(N, M, pi), where

Pi is the single pulse false alarm probability. The single pulse normalised threshold is
T - log(pl). We define " to be the target normalised signal to noise ratio (SNR), which
under Swerling models, we assume has a Gamma distribution with parameters r 1 and
0 ý ý. The parameter 1 is a fluctuation parameter, and ýo is the average normalised

SNR. The density of B is thus
Pl-1 (0l I

ý(t14,'l) - e- Co. (18)

We let p,(t, T) be the single pulse probability of detection, for a constant target with single

pulse normalised SNR level t. Then

p,(t, T) e-(t 2vt)dv

6 -Q7-t) j0 e7-I0(2 (v + T)t)dv, (19)

where j0 is the modified Bessel function of order zero [Bowman 1958]. For the four
Swerling target models considered in [Shnidman 1998], the binary integrated probability
of detection turns out to be

PD f E(N,M,p(t, -))ý(tj~o,l)dt, (20)

where the form of p(t, T) depends on the Swerling case. As explained in [Shnidman 1998],
for Swerling 1 and 3, p(t, T) p,(t, T). In the case of Swerling 2,

p(t, T) ]P,(P, -)ý(Pjo,l 1)dp e1mo, (21)

7
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where the latter equality can be demonstrated analytically. It is important to note that
the fluctuation parameter 1 is taken to be 1, for Swerling 1 and 2 target models, and is
assumed to be 2 for Swerling cases 3 and 4. In the case of Swerling 4,

p(t,T) fP,(P, T)ý(PlýO,1 2)dp, (22)

the difference between this and (21) being the difference in fluctuation parameters. When
applied to (20), the Swerling 2 and 4 expressions for p(t, T) do not depend on t, and so (20)
reduces to the cumulative sum of binomial probabilities (17). Hence we do not examine
these cases further, since Monte Carlo simulations are not required. We would like to
obtain estimates of (20), using a Monte Carlo approximations, for Swerling 1 and 3 target
models.

The presence of the Gamma density in (20) suggests that this could be used as a simulation
density. Hence, a Monte Carlo estimator for the detection probability (20) is

1K

PD (N, M, K, T) - .i E(N, M, P, (Ej, T)), (23)
j-1

where each Bj is a Gamma random variable with density given by (18). The Gamma
variables can be simulated by adding r - 1 independent realisations of Exponential random
variables with parameter 3 .

We now need to approximate p,(t, T). There are two possiblities. Firstly, from [Shnidman
1995] and [Weinberg and Kyprianou 2005], we have

00 tk Tj

p,(t, T) e-(T+t) E E --
k-0k .-O

e-(T+t) x

(24)

1+t(1+T)+- 1+T+- +- 1+T+-+- ..

which yields the approximation

log(p,(t, T)) -T + Tt - T + 2 - (25)

Note that this quadratic expression is always negative which is important since p,(t, T) is
a probability, and any estimate of it must also be a probability.

We would expect the approximation (25) to not work well except when t and T are both
small.

8
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Secondly, from [Weinberg and Kyprianou 2005], we have

p -(t,) P(N 2(T) •< Nl(t)), (26)

where (N1(t), N2(T)) d (Po(t), Po(T)) are independent Poisson random variables. (Note
that Po(A) indicates a Poisson distribution with mean value A).

A Monte Carlo estimator of (19) can be based on (26), by simulating from the distribution
of N, and evaluating cumulative probabilities of N2. Specifically, one can use the estimator

1H

fr(t, T) HZ P(N2(T) _< ), (27)
j=1

where each Qj is generated from a random variable with a Po(t) distribution. This can be
used in conjunction with the estimator (23) to estimate the detection probability (20). It
was found that an estimator based on (27) converged faster, and for less simulation runs,
than an estimator based directly on the integral (19). Using (27) also provided better sim-
ulation estimates for the probability (20), rather than using the quadratic approximation
(25).

Figure 7 in Appendix A is a simulation of (23), in the case where N - 5, M - 3,
1 - 2, ýo 1 and T - 0.4. The estimator's Matlab code can be found in Appendix B.
The quadratic approximation (25) was used to estimate the probability (19). The jth
simulation uses K - 10 iterations in the estimator (23). As can be observed, the Monte
Carlo estimator (23) begins to settle down from the third simulation, which corresponds
to K 1000.

Figures 8-11 in Appendix A contain a number of simulations of the estimator (23), compar-
ing the usage of the quadratic approximation (25) to the Poisson estimator (27). Figures
8 and 9 are for the case where N 7, M 3, 1 - 2, 0o - 0.001 and - 1. The jth
simulation uses K 10i. Figure 8 compares an estimator using the quadratic approxima-
tion (25) to one using the Poisson estimator (27), with H - 1000. In this example, both
estimators seem to be settling down after K - 1000 simulations. Figure 9 is for the same
scenario, except only estimators based upon the Poisson estimate (27) are included. The
three cases considered are for H - K, H - 10 and H - 1000. This simulation, as well as
others investigated, showed that it is sufficient to take around H - 1000 to obtain a good
Poisson estimate.

Figure 10 is a simulation for the case where N - 5, M - 3, 1 - 2, ýo 1 and T - 5.3704.
As previously, K 10i for the jth simulation. Three estimators are compared to an
approximation based upon a numerical integration scheme1 . The numerical integration
scheme gave a detection probability of 0.0095. The two Poisson estimators use H - K
and H - 1000 respectively. As can be observed, the Poisson based estimates coincide with
the numerical value rather quickly, while the quadratic based estimator improves slowly.

1 This was provided by Mr Daniel Finch, EWRD, who used Matlab's numerical integration function
quad to estimate the detection integral (20).

9
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Figure 11 contains estimates for the case where N - 20, M - 15, 1 - 2, ýo 1 and
T - 1.4849. The three estimators used are the same as in Figure 10. The numerical
scheme gave a value of 0.1184. In this case, the Poisson estimator with H - K has the

best performance.

Other simulations considered showed that the estimator (23), when coupled with the

quadratic approximation (25), had very poor performance when the threshold T and the
SNR ýo were fairly large. In contrast to this, it was found that using the Poisson estimate
(27) improved the estimation considerably, with reasonable results for K - 1000.

10
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5 Conclusions and Future Directions

This report examined the Monte Carlo estimation of definite integrals. A number of
estimators of the Gamma and Beta function were considered. These estimators performed
reasonably well in practice. A number of estimators of the probability of detection, for a
binary integration scheme, were also considered. These gave reasonable results in practice.

In future work, the detection probability estimator will be compared to other estimators,
to gauge its performance.
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Appendix A: Simulations

Estimators for Gamma function using 10000 samples
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Figure 1: Simulations of the Gamma estimators (12) and (13), for a selection of values
of X. In each case, both estimators are compared with an estimate based on the Matlab
inbuilt Gamma function. The number of simulations used in each case is 10,000. In the
legend, Gamma refers to the exact result, Exponential refers to the estimator (12) and
Weibull refers to (13).
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Estimators for Gamma function using 10000 samples
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Figure 2: A simulation under exactly the same conditions as that of Figure 1, showing
slightly worse results.
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Estimators for Gamma function using 100000 samples
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Figure 3: Simulations of Gamma function estimators as in Figures 1 and 2, except the

number of simulation samples has been increased to 100,000.
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Estimators for Beta function using 50 samples
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Figure 4: Simulations of the Beta integral estimators (14), (15) and (16). In each case,
50 simulations have been used to estimate the integral (11) with parameters (n, m). In the

legend, Beta refers to the exact result, while the other three refer to the estimators in order
of appearance.
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Estimators for Beta function using 100 samples
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Figure 5: Same as for Figure 4, except 100 simulations are used to generate the estimates.
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Estimators for Beta function using 1000 samples
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Figure 6: As for Figure 5, except 1000 simulations are used.
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Estimation of Detection Probability
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Figure 7: Simulation of (23) in the case of N 5, M 3, 1 2, ýo 1, T 0.4 and for

simulation j, K 10j. The quadratic approximation (25) was used to estimate the single
pulse probability (19).
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Estimation of Detection Probability
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Figure 8: A comparison of estimator (23) using the quadratic approximation (25) and the

Poisson estimator (27). In this case, N - 7, M - 3, 1 - 2, ýo - 0.001, T - 1. For each
j, K - 10J, and H - 1000.
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Estimation of Detection Probability
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Figure 9: Comparison of three estimators using different Poissons estimators. The same
parameter values are used as for the simulation of Figure 9, except the value of H is as
shown.
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x 10.3 Estimation of Detection Probability
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Figure 10: A simulation in the case where N 5, M 3, 1 2, ýo 1 and T- 5.3704.
As in previous simulations, K 10j. The first Poisson estimate uses H K, while
the second uses H 1000. The numerical estimate is based upon numerical integration
applied directly to the detection probability integral (20).
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Estimation of Detection Probability
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Figure 11: As for Figure 10, except N 20, M 15, 1 2, ýo 1 and T 1.4849.
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Appendix B: Matlab Code

-I, F EI I F -3 1 H MI

1 kunction Estimate = garocaEst(Option,N,a,b,Saoplee)

2 if nargin < 4

4 a= 1 ;

- b 1i ;

end
!7

1% Different estimators of the gaona function

S switch Option

21 gaiaEst = @ ýo,o) gaosca~n)

2 c.ase I

I1 Sa -ples = -Ilg(Samples); 6 transform uniformly distributed samples to Exponential

14 gatrnaEst = @(x,n) sum(x.o(n-l))/leng9th(x);

15 ose 2

1- Samples = b.( -legiS•capleo (l . c/a); 0 transform uniforoly distributed samples to Weibull(a,

17 ganniEst = Iox,n) )(. ./c>~sua( o.)n-o)).Kecp)-+±(x./bj .cfl /length(.);

19

2 12 01;

21 fcrox 1:0.5:N2

22 cc + 1;

22 Estimate(m) = gsammaEst(samplesx);

24 end

41
Ia.s P Is Ccl 1 701

Figure 12: This function calculates Matlab's Gamma function (Option 0), estimator (12)
(Option 1) and estimator (13) (Option 2). N Gamma values are calculated for integers
and half-integers from 1 to N. Parameters a and b correspond to the a and ,3 Gamma
parameters. Samples is a vector of uniformly sampled points from the unit interval.
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Eiie Edit Text Windoiw He lp

1 function Estimate = betaEst(Option,N,Samples,AsNatrix)

2
3 if nargin < 4

4 Asllatrix = false;

5 end

6
7 1 Different estimators of the beta function

8 switch Option

9 case 0

18 distn = @(u,m) 1"

11 betaF = U(x,m,n) beta(a,n);

12 case 1

1 distn = @(u,m) u;

14 betaE = 0(x,m,n) sum( x.A(T-l)).a((lx).A(n-I)))/length(x);

15 case 2

16 distn = 0(u,m) u.A(i/m);
17 betaE = @(x,m,n) (i/m)lsum( ((l-x).I(n-l)))/length(x);

18 case 3
19 distn = @(u,m) -log(1-ý(i-exp(-I)) t

u));

20 betaE = U(x,m,n) sum((l-exp(-l)).texp(x).t(x.'(m-l)).t((l-x).'(n-1)))/length(x);

21 end

2 Estimate = zeros(N,N);

24 for a = I:N

25 for. n = i:N

26 Estimatecm,n) = betaE(distn(Samples,m),m,n),,

27 end

208 end

22 if -AsMatrix

30 Estimate = Estimate';

31 Estimate = Estimate :l;

32 end

FbetaEt LnO Cal

Figure 13: Function for calculation of Matlab's Beta function (Option 0), estimator (14)
(Option 1), estimator (15) (Option 2) and estimator (16) (Option 3). N is an integer indi-
cating the size of the matrix of Beta values. Samples is as for the Gamma implementation
in Figure 12. AsMatrix, an optional argument, provides a better formatted output.
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ile Edit Tt Window Help,

1 function Estimate = binintEst(Option, KI, K2, N, H, 1, xO, tau) t

3Sumn = 0;

4 for j=I:K1

5 t = gamrnd(1, xO/1);

h if Option == 1
7 Prob = sum(poisscdf(poissrnd(t,K2,I),tau))/K2;

H else
Prob = (exp(-tau))*(1 + taunt - 0.5*(tau-0.5*tau'2);t'2);

112 end
11

12 binSum = 0;

13 for i =M:N

14 binSum = binSum + binopdf(i, N, Prob);

1F end

15 Sum = Sum + binSum;
17 end

18 Estimate = Sum/Kl;

41 I ,I
binint~st Lnl 1. -:u ,Il

Figure 14: Implementation of the binary integration detection probability estimator (23).
Option enables the single pulse probability of detection to be estimated via (25) (Option
0) or (27) (Option 1). Parameter K1 is the number of Monte Carlo simulations for the
main estimator (23), while K2 is for the Monte Carlo estimator (27). N, M, I and tau
are the corresponding parameters in the binary integration scheme, while xO ýo.
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